

Managing large amounts of variable renewables in the electricity system to mitigate global warming

Reinhard HAAS

Prag, 8th November 2016

CONTENT:

- 1. Introduction: RES development
- 2. Method of approach
- 3. How variable renewables impact prices in electricity markets
- 4. A market design
- 5. Conclusions

Development of electricity from new renewables in EU-28

Electricity generation EU-28

Core objective/ our contribution:

... to identify major boundary conditions for sustainability and competition in the Austrian electricity system

Very important:

Our reflections apply in principle to every electricity system world-wide, regardless of the quantity of variable sources!

Old thinking: a one-way system

2 METHOD OF APPROACH

- Identification of hourly residual load over a year for various scenarios;
- Applying a fundamental model to calculate (static) hourly electricity spot market prices;

 Integration of storage, flexibility and demand- response in a dynamic framework for price calculation;

How prices come about in electricity markets:

Competition: Prices = Marginal Costs

at every hour

3 HOW VARIABLE RENEWABLES IMPACT PRICES IN ELECTRICITY MARKETS

Supply and Demand

Key term of the future: Residual load

Residual load = Load - non-flexible generation

Deviation from STMC-pricing in spot markets

Electricity price spot market

→ These price spreads provide incentives for new flexible solutions!!!!

4 A MARKET DESIGN

Classified residual load

A MARKET DESIGN

Flexible coverage of residual load

Elements of electricity markets

Years, months

Day, hours 1/4 hours

The core role and responsibility of balancing groups

Balancing group: entity in a control area of an electricity system. has to ensure that at every moment demand and supply is balanced

E.g. municipal utility of Prag, Bratislava, Vienna To meet this target: own generation, storage, flexibility, Trading in long-term, day-ahead and intraday market

Every deviation → high costs!

New Thinking:

5. CONCLUSIONS

- A sustainable electricity system is a question of integrating a broad portfolio of technologies and demand response options!
- Very important: correct price signals!!!
- The key: Flexibility! Yet, currently no economic incentives but activities started → very promising!
- New key player: Balancing group or supplier, rather than the generator