BIOMETHANE PRODUCTION: CURRENT STATE, PERSPECTIVES, FEEDSTOCK, AND ECONOMIC EVALUATION IN AUSTRIA AND THE CZECH REPUBLIC

Camila Rodríguez M. and Tomáš Moudrý

INDEX

- 1. Introduction
- 2. Available feedstocks
- 3. Biogas production technologies
- 4. Biomethane production
- 5. Biomethane in the EU
 - 5.1. Austrian scheme
 - 5.2. Czech Republic scheme
 - 5.3. Long-term visions for Austria and the Czech Republic
- 6. Results and conclusions

METAL ELEMENTS	Inhibit	the	diges	tion	process
	interfere		with	the	e enz
CONTENT	functionality				

enzyme's

and

2. AVAILABLE FEEDSTOCKS

- Europe → largest producer of biomethane. Mainly produced from crop residues and animal manure.
- China → primary feedstock: animal manure and MSW. High number of installed household digesters
- United States → biogas
 production based on landfill
 gas collection from MSW

* Crops include energy crops, crop residues and sequential crops. Note: 1 Mtoe = 11.63 terawatt-hours (TWh) = 41.9 petajoules (PJ).

Figure 2. Biogas or biomethane production by feedstock source, 2018. Source: [3]

3. BIOGAS PRODUCTION TECHNOLOGIES

WHAT IS ANAEROBIC DIGESTION?

• A process where microbial organisms biodegrade

organic matter

• The products are a **gas mixture** conformed

mainly of methane (CH_4 , up to 75%), carbon

dioxide (CO₂, up to 50%), and trace gases, and a

semisolid compound.

• Different reactions between the bacteria and

organic substrate occur

ANAEROBIC DIGESTION TECHNOLOGIES

Figure 4. Anaerobic digesters. Information obtained from [5]

3. BIOGAS PRODUCTION TECHNOLOGIES

CONVENTIONAL DIGESTERS

ANAEROBIC SEQUENCING BATCH REACTOR (ASBR)

High residence times Low volume flows

CONTINUOUS STIRRED TANK REACTOR (CSTR)

Continuous insertion of substrate Parameter uniformity and system simplicity High residence times and energy

ANAEROBIC PLUG-FLOW REACTOR

Higher biogas conversion efficiency Excellent stability and efficiency

4. BIOMETHANE PRODUCTION

Biogas composition:

- Methane (CH4, up to 75%)
- Carbon dioxide (CO2, up to 50%)
- Nitrogen (N2, 0-3%)
- Water vapor (H2O, 5-10%)
- Oxygen (O2, 0-1%)
- Hydrogen sulfide (H2S, 0-10000ppm)
- Ammonia (NH3, up to 200 mg/m3)
- Siloxanes (up to 40 mg/m3)

Gas grids require a minimum methane purity of 95% and low or no impurities \rightarrow Biogas must be upgraded to biomethane

Figure 5. Biogas upgrading technologies. Source: [5]

4. BIOMETHANE PRODUCTION

MOST COMMON TECHNOLOGIES

WATER SCRUBBING

Water as a reactive agent Relatively high pressures of around 6 to 10 bar Regeneration of water on a stripping column

CHEMICAL SCRUBBING

Similar configuration to water scrubbing Uses a chemical solvent (e.g., KOH, NaOH, or K₂CO₃) to absorb H₂S and CO₂

PRESSURE SWING ADSORPTION (PSA)

The contaminant is removed by alternating adsorption and desorption steps Four column configuration High biomethane purity and efficiency

5. BIOMETHANE IN THE EU

- Vital role in future
- Goal = 35 BMC by 2030
- REPowerEU, Fit for 55, Green Deal

Obstacles

- \circ different level on EU level
- o prices

Ways to increase biomethane

- sustainable + food, agriculture, forestry
- \circ subsidies, share costs

Figure 6. Support schemes in place per country. Source: [6]

5. BIOMETHANE IN THE EU

DIFFERENCES AMONG EU MEMBER STATES

Figure 7. Consumption of biomethane per sector and per country (for countries where data is available). Source: [6]

Figure 8. Total biomethane production compared to total biomethane consumption per country. Source: [6]

 \bigcirc

- 2005 biomethane power plant
- Subsidy system = Feed-in Tariffs
- Legislative background
- Registry system is working

• Not fully developed, production is used

for various purposes

- Local subsidies, cost-sharing
- Still space for improvement

5.2. BIOMETHANE IN THE CZECH REPUBLIC

- Biomethane = future
- Particular strategy for biomethane is missing
- Regulatory and subsidiary framework
- Market not developed
- Long-term visions
 - to strengthen the production
 - legislative background
 - subsidiary framework

5.4. LONG-TERM VISIONS FOR AUSTRIA AND THE CZECH REPUBLIC

6. RESULTS AND CONCLUSION

- Biomethane has the potential to cover the future gas demand while solving significant challenges
- 2. A wide range of feedstock can be utilized
- The conventional technologies ASBR, CSTR, and APFRS are the simplest and most cost-effective for biogas production
- Other technologies such as membrane-based digesters have higher efficiencies but higher costs
- 5. Differences among the EU
- 6. Biomethane is more developed in Austria than in the Czech Republic

THANK YOU

Camila Rodríguez M. Tomáš Moudrý

REFERENCES

[1] B. Drosg, R. Braun, G. Bochmann, and T. Al Saedi, "Analysis and characterisation of biogas feedstocks," in *The Biogas Handbook: Science, Production and Applications*, Elsevier Inc., 2013, pp. 52–84. doi: 10.1533/9780857097415.1.52.

[2] S. Mirmohamadsadeghi, K. Karimi, M. Tabatabaei, and M. Aghbashlo, "Biogas production from food wastes: A review on recent developments and future perspectives," *Bioresour Technol Rep*, vol. 7, Sep. 2019, doi: 10.1016/j.biteb.2019.100202.

[3] International Energy Agency (IEA), "Outlook for biogas biomethane. Prospects for organic growth," 2020.

[4] H. Negi, R. Agrawal, A. Verma, and R. Goel, "Municipal solid waste to bioenergy: Current status, opportunities, and challenges in indian context," in New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biotechnology in Agro-environmental Sustainability, Elsevier, 2019, pp. 191–203. doi: 10.1016/B978-0-444-64191-5.00014-6.

[5] V. Kumar Gupta and M. G. Tuohy, "Biofuel and Biorefinery Technologies Volume 6 Series editors." [Online]. Available: http://www.springer.com/series/11833

[6] Decorte, M., et al. "D6. 1: Mapping the state of play of renewable gases in Europe." REGATRACE project (2020). Pp. 4, 8–11, 17–20, 23–24, 58.