Czech-Austrian Spring and Summer School The relevance and costs of short vs long-term storage

PETRA DUŠKOVÁ, ZEJNEBA TOPALOVIĆ

1

Structure of the presentation

- Motivation the relevance of energy storage
- State of art in CZE and AUS
- Long-term and short-term storage
- Examined storage technologies
- Method of aproach
- Results
- Conclution

Motivation – the relevance of storage

- Due to climate change there is a need for deployment of renewable energy resources
- Renewable resources are mostly intermittent there is a need for energy storage
- Energy storage can be useful in:
 - Stabilization of power grid and ensuring its safe operation
 - Lowering the energy losses in power grid
 - Saving energy in times of surplus generation for later use

State of art

- Both Austria and Czech Republic mainly Pumped Hydro Storage, only starting with the instalations of Li-ion batteries
- Austria 6358 MW installed in PHS, 2,5 MW in Li-ion batteries
- Czech Republic 1175 MW installed in PHS, 3 MW in Li-ion batteries

Long-term and short-term energy storage

Short-term energy storage

- Used for power grid stabilization
- Ensures power quality (voltage and frequency) is remained
- Very short response time miliseconds
- Can operate for shorter time than long-term storage (minutes to hours)

Long-term energy storage

- Used in times of peak demand, when there is not enough energy supply
- Can opperate for few hours and supply electrical energy to the grid

Energy storage technology

Examined storage technologies

Short-term energy storage

- Flywheel transfers kinetic energy in and out with electric machine, efficient but expensive
- Ultracapacitor "big" capacitors storing energy, longer life cycle than batteries but again very costly
- Li-ion batteries store electrical energy electrochemically, high energy density and efficiency among the batteries

Long-term energy storage

- Pumped Hydro Storage uses hydraulic potential energy of water, high investment cost, it is difficult to make them commercially and socially acceptable
 - Compressed Air Energy Storage stores compressed air in an abandoned mine, a drilled cavern or a steel tank, efficieny is variable and there are safety issues

Method of approach

- $\blacktriangleright C_{total} = Cpcs + Cbop + Csto \times t$
- $\triangleright Clcc = Ccap, a + CO\&M, a + Cr, a + Cdr, a$
- Ccap, $a = Ctotal * \alpha$
- $\blacktriangleright \ \alpha = \frac{i(1+i)^T}{(1+i)^T 1}$
- $\blacktriangleright CO\&M, a = Cf, a + Cv, a * t$
- $Cr, a = \alpha * \sum_{k=1}^{r} (1+i)^{-kp} * \frac{Cr*t}{\eta s}$

$$\blacktriangleright \quad Cdr, a = Cdr * \frac{i}{(1+i)^T - 1}$$

Levelized costs of storage

$$\blacktriangleright Cs = \frac{\frac{C_{total} \alpha + CO \& M}{T} + Ce}{\eta s} = \frac{\frac{Ccap, a + CO \& M, a}{T} + Ce}{\eta s} = \frac{Clcc}{T\eta s} + \frac{Ce}{\eta s} = Clcoe + \frac{Ce}{\eta s} = Clcos$$

- Cs = storage costs
- Ce=energy costs, electricity price
- Clcoe=levelized cost of electricity
- Clcos= levelized cost of storage
- $\blacktriangleright T = full load hours$
- ► ηs = efficiency of storage

Input parameters for different short and long-term storage technologies

	PHS	CAES	Flywheel	Ultracapcit or	Lithium- ion battery
Capital costs €/kWh	2,190	1,385	1,992	332	225
Power conversion					-
system PCS €/kW			included	290.5	239.04
Balance of Plant BOP	included in Cap	pital Costs	in Capital		
€/kW			Costs	83	83
Construct and					
Commissionig €/kWh			398.4	66.4	83.83
Total Costs €/kW	2,190	1,385	2,390	772	1,557
Total Costs €/kWh	137	87	9,562	61,818	389
O&M Fixed €/kW-year	13.20	13.86	4.65	0.83	0.0249
O&M Variable					
(cents/kWh)	0.0002075	0.1743	0.0249	0.0249	0.0249
Round- Trip efficiency					
%	0.8	0.52	0.86	0.92	0.86
Cycles at 80% DoD	15,000	10,000	200,000	1,000,000	3,500
Calendar Life	50	25	>20	16	10
Energy/power ration	16	16	0.25	0.0125	4

10

Results

	PHS	CAES	Flywheel	Ultracapcito r	Lithium- ion battery		
Capital recovery factor	0.1009	0.1102	0.1175	0.1278	0.1627		
Capital costs €/kW	220.84	152.61	280.78	98.66	253.41		
Capital costs €/kWh	13.81	9.60	1123.10	7901.42	63.35		
Life cycle costs €/kW	234.03	166.50	285.42	99.49	253.43		
FULL load hours	5,840	5,840	91	5	1,460		
Levelized cost of electricity €/MWh	40.07	28.51	3127.93	21806.39	173.58		
Electricity market price €/MWh Hudex 2019.	50.36						
Electricity market price €/MWh Epex 2019.	40.06						
Levelized cost of storage for Czech Republic market €/MWh	113.04	151.67	3695.69	23757.34	260.40		
Levelized cost of storage for Austria market €/MWh	100.17	131.87	3683.71	23746.14	248.42		

Electricity market Hudex hourly prices

€/MWh 5561 5561 55944 6510 6793 6793 77076 77359 77925 77925 7925 7925 8208 8208 1133 1416 1699 1982 2548 2548 2548 2548 2548 33114 3114 3337 3380 4529 4812 -Hours over a year

Electricity market Epex hourly prices

7/7/2021

Levelized costs of storage for Hudex and EPEX market price

7/7/2021

Levelized cost of storage for most costeffective short and long-term technologies

300 250 268:49 200 150 150 100 100 100 100 PHS CAES Lithium-ion batteries LCOS Czech Republic LCOS Austria

Sensitivity analysis of levelized cost of storage for different short and long-term technologies

Conclusion I.

- Investments in energy storage systems are going to increase
- Advantages: stability and safe operation of the interconnected electricity grids
- Usage for RES integration : load levelling, frequency regulation, voltage support and black start.
- Optimisation of the transmission and distribution of electricity, lower grid losses.
- Challenge: enough energy according to demand.
- Long-term energy storage systems supply electrical energy in the time of peak demand or when demand overcomes supply.
- Why: achieving carbon-neutral EU and other goals for the years 2030 and 2050

Conclusion II.

- PHS the most cost- effective technology with 113 €/MWh levelized cost of storage, followed by compressed air storage with 152 €/MWh.
- Short- term energy storage : Lithium- ion batteries are leading with costs of 260 €/MWh
- If market prices increase, levelized cost of energy storage would increase as well.
- Austria has desirable geographical position, has pumped hydro storage installed, should invest more in batteries.
- Czech Republic, should invest more in energy storage
- Firstly, investments will be in the most cost-efficient short and long-term energy storage technologies, but others will follow as well.
- Future work would likely cover other calculation for other energy storage technologies.

18

Thank you for your attention!